Nonlinear Batch Reactor Temperature Control Based on Adaptive Feedback-based Ilc

نویسنده

  • Eduardo J. Adam
چکیده

This work presents the temperature control of a nonlinear batch reactor with constrains in the manipulated variable by means of adaptive feedback-based iterative learning control (ILC). The strong nonlinearities together with the constrains of the plant can lead to a non-monotonic convergence of the l2-norm of the error, and still worse, an unstable equilibrium signal e∞(t) can be reached. By numeric simulation this works shows that with the adaptive feedback-based ILC is possible to obtain a better performance in the controlled variable than with the traditional feedback and the feedback based-ILC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network

Abstract—Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based ...

متن کامل

Iterative Learning Control of a Batch Cooling Crystallization Process based on Linear Time- Varying Perturbation Models

Abstract The paper presents an approach to improve the product quality from batch to batch by exploiting the repetitive nature of batch processes to update the operating trajectories using process knowledge obtained from previous runs. The data-based optimization methodology is based on using the linear time varying (LTV) perturbation model in an iterative learning control (ILC) framework to pr...

متن کامل

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

Application of Iterative Nonlinear Model Predictive Control to a Batch Pilot Reactor

The aim of this article is to present the Iterative Model Predictive Controller, inmpc, as a good candidate to control chemical batch reactors. The proposed control approach is derived from a model-based predictive control formulation which takes advantage of the repetitive nature of batch processes. The proposed controller combines the good qualities of Model Predictive Control (mpc) with the ...

متن کامل

Optimal Iterative Learning Control for Batch Processes with Model Parameter Variations Using Strong Tracking Filter

An optimal iterative learning control (ILC) strategy is proposed to track product quality trajectories of batch processes by updating a linear time-varying perturbation (LTVP) model. To address the problem of model parameter variations from batch to batch, the LTVP model is renewed by using strong tracking filter (STF) algorithm. Comparing recursive least squares (RLS), STF can capture the chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015